Design and Construction of a 160 m long Timber Bridge in Mistissini, Québec, Canada

Presented by :

Mohammad Mohammad, P. Eng, PhD Senior Research Advisor, NRCan Research Leader, FPInnovations

Prepared by: Denis Lefebvre, ing., M.Sc.A. Directeur d'expertise, Stantec

June 14, 2017, Oslo, Norway

Timber Bridges in Canada

Past

- Wood was a prominent structural material used in bridge construction up until the 1950s
- Due to abundance of forests
- Mostly railway and covered timber bridges

Timber Bridges in Canada

Currently

Steel and concrete dominate

o Why not using wood?

- Spans associated with conventional wood bridges were relatively limited
- Wood can decay; treatments can be both a bonus and a penalty
- Lack of wood design knowledge

Trends/Opportunities

- + Municipalities installing timber footbridges
- + Provinces (BC, QC, ON) constructing timber traffic bridges
 - Inspired by recent interest in timber across NA
- + FPI/CWC market studies promising
- + Bridge Engineers still have concerns:
 - Cost
 - Durability/service life
 - Maintenance requirements
 - Strength properties of specific materials

Kiskatinaw bridge, BC 1943 Photo credit BC MOSTantec

Timber Bridges in Canada

Currently and Future Direction/Trend

- New technologies
 - High quality EWP

- Composite configuration: Carbon and glass fibre reinforced polymers (FRP), high performance concrete and epoxies, innovative connection systems
- Major improvement in treatment methods
- Resurgence of wood as a modern and yet sustainable bridge building material
- Aesthetic and cultural considerations

Norway Provides a Good Example

Norway Provides a Good Example

+ Total 17,100 bridges, less than 200 timber

- + Increasing % of new bridges are timber
- + Nordic Timber Bridge Project
 - 1995 to 2002, ~ CDN\$4 Million
 - Led by Erik Aasheim of the Norwegian Wood Technology Institute
 - Funded by Timber industry, road authorities, and national research funds
 - Norway, Sweden, Denmark and Finland

Tretten (148 m) - 2012

Evenstad (5 spans @ 36 m - 180m) - 1996

Kjøllsæter (145 m) - 2006

Hybrid concrete/wood: Supports heavy military vehicles and equipment (100 tons). Good detailing

Flisa (196 m) - 2003

Åset (37m) - 2014

Modern Timber Bridges in Canada

Modern Timber Bridge in Canada Use of CLT in Bridges, Quebec (Girder box)

Banff Pedestrian Bridge

80 m span

Mistissini Bridge over Uupaachikus Pass

Wood deck on Wood Girders

- o Length: 160 m
- o Width: 9.25 m
- Lane width: 3.0 m
- Sidewalk: 1.8 m
- 2 abutments and 3 piers
- Shallow foundations (no piles required)
- Durability by design

Source: Denis Lefebvre Stantec

Background: Mistissini

Uupaachikus pass of Lake Mistassini

Background

Why building a bridge in Mistissini?

- + Access to a larger territory for the Cree community, and;
- + Access to a large gravel pit in order to satisfy the growing demand for gravel used in the construction projects of the community.

What are the expectations of the community?

- + Needs a bridge...
- + No particular expectation for architecture

Composite Steel Concrete vs Wood solution

- + Cost of the preliminary design:
 - 8.8 M\$ for composite steel concrete solution
 - 8.7 M\$ for wood solution
- + Advantages of the wood solution:
 - Atheistically pleasing
 - Glulam factory is located 90 km from the site
 - Negative carbon footprint
 - Black spruce comes from the region

Carbon Footprint

Émissions équivalentes de CO ₂ en kg/m ³			
Matériaux	Athena	Moyenne Athena	Ademe
	kg/m³	kg/m³	kg/m³
Béton 30MPa	301	302	209
Béton 60MPa	304		
Acier d'armature	4697	9721	8580
Plaques laminées à chaud	8968		
Plaques en acier galvanisé	13678		
Quincaillerie	11543		
Béton bitumineux	127	127	145
Bois Nordic LAM	-765	-765	-825

- + Total emissions for Steel/Concrete: 969 tonnes of CO_{2e}
- + Total emissions for Wood : 497 t (Total of 1270 m³ of wood)
- + Total potential carbon benifit : 1466 tonnes ≡ 640 000 L of gas

21

Back to Design

Nordic Glulam (from Black Spruce)

- + Bending : $f_b = 30.7$ MPa
- + Longitudinal shear : $f_v = 2.2$ MPa
- + Compression : f_c = 33 MPa
- + Tensile strength (gross area) : ft = 15.3 MPa
- + Tensile strength (net area) : ft = 20.4 MPa
- + Elastic modulus : E = 12400 MPa
- + Elastic modulus (compression) : E₀₅ = 10788 MPa
- + Thermal expansion 3 to 5 x 10⁻⁶
- + Density : 500 kg/m³

Steel and concrete

- + Concrete $f_c^{\circ} = 35$ MPa, E=28,000 MPa, CTE = 10 to $11x10^{-6}$, 2,400 kg/m³
- + Steel f_v = 350MPa, E=200,000 MPa, CTE = 11.7x10⁻⁶, 7,850 kg/m³

Elevation view of the bridge

Cross section of the bridge

- + No expansion joint
- + Weight of the wood deck is 3 times lighter than a steelconcrete deck
- + Bridge designed for loads due to braking forces, temperature and seismic effects are all taken into account

Geometric Constraints

+ Client criteria:

- Bridge of 160 m of span opposite Main Street
- 4m elevation between the west and east shore
- A Twin Otter aircraft must be able to navigate under the bridge (dimensions of the aircraft: width 20 m, length 16 m, height 6 m)

Geometric considerations

Back to Design

Strategy for drilling...

Geotechnical Conditions

Strong moraine with very good bearing capacity:
 500 kPa at the ELUT

- Construction of the bridge on shallow foundations
- Controlled backfill required on the abutment side of Axis 5 (steeper moraine position deeper at this location)

Geotechnical Conditions

Controlled backfill required on the abutment side of

Design Criteria for the Wooden Bridge

- Designed for legal purposes CL-625 loading (S6 Cnd Highway Bridge Code)
- Two lanes traffic
- \circ Speed: 50 km / h
- \circ Low seismic zone with a = 0.036
- Seismic category: Emergency bridge
- Design Verification with S6-06 and O86-09
- Maximum deflection L/1000 (maximum @ mid-span of 43 mm)

- Laminations are made of 38mm x
 38mm black spruce pieces
- Laminations are cut to the desired width
- Then, glued to create a straight or curved beam ...
- The notches, the curves and the hole: are prefabricated using CNC machines

Curtsey of Nordic

Planing, sanding, drilling & profiling using CNC machines

Pre-assembly of beams and splices at the plant to ensure good fit.

Construction Details

Splice Connections

Splice connections with steel plates

- Allows to develop ~ 70 kN in shear
 (all directions)
- Fixed with 38 ring nails of 6mm x
 60mm
- Creates an air gap between wood
 beams

44

Hardware – Splice between Arch and Beam

45

Hardware – Splice between Arch and Beam

4000 steel plates x 38 nails = 152,000 nails

46

Hardware – Splice between Arch and Beam

Hardware – Pin Connection

Hardware – Structural Bearing

Foundations – Cofferdams

Cofferdam: Installation of the Steel Frame

Sonotubes and Pumping

Starting the Concrete Work

Cutting and Removing the Cassion

Foundations - Casting Pier 2 (West)

Out of straightness.. Was corrected once spacers were tightened

Installation of Glulam Deck

Protecting the Deck and Girders

• Sidewalk, Curb, Membrane and Bimagrip

• Sidewalk, Curb, Membrane and Bimagrip

Deck end: Fiberglas and bitumen membrane to protect wood deck

How many workers were involved in the construction of this bridge?

Including crane operator

73

Figure 5: Pre-drilled and on-site drilled connectors

E Lessons Learn

Better tolerances...

Diameter of the steel bar is 25.4 mm (1 in):

+ Holes in steel plate was 28 mm change by 29 mm;

+ Holes in wood was 29 mm, keep the same value;

Quantity of construction materials used in the bridge:

Foundation

- + 1200 m³ of concerte
- + 100 tonnes of steel reinforcement

Bridge Super Structure

- + 4000 steel plates, 152,000 nails
- + 900 m³ of glulam beams/girders
- + 300 m³ of glulam panels
- + 70 m³ de CLT sidewalk
- + Total of 1270 m³ of wood
- + 20 Dowels
- + 2200 threaded rods
- + 6800 SFS Blue Max 15"

Total Final Cost: \$8.7 M CAN (0\$ extra!!!)

Acknowledgement

Stantec (DESSAU)

- + Chargé de projet :
 - Alessandro Cirella, ing.
- + Chargé de discipline Pont :
 - Denis Lefebvre, ing., M.Sc.A.
- + Équipe d'ingénierie :
 - Michael Forcier, ing. jr.
 - Christine Lacasse, ing., Ph.D.
 - Leonora Madjuni, ing. jr.
 - Grégoire Richard, ing.
- + Équipe technique :
 - Guy Forget
 - Aziz Guitoun
 - Fatma Hassaïm
 - Éric Tremblay

Directeur des services municipaux -Cree Nation of Mistissini :

- Emmett MacLeod
- Jean Bénac

Chantiers Chibougamau :

- David Croteau, ing., M.Sc.
- Julie Frappier, ing.

Constructions BSL Inc:

- Charles-Olivier Labonté, ing.,
- Jimmy Fortier, ing.

83

stantec.com